Epigenetic predictors of childhood cancer and their in

utero determinants

Akram GHANTOUS

Postdoctoral Fellow

Supervisors: **Dr. Hector HERNANDEZ VARGAS**

Dr. Zdenko HERCEG

Why Epigenetics?

DNA methylation marks are commonly deregulated in childhood cancers

DNA methylation is deregulated in ALL

MDR1, THSBS2, THSBS1, MYF3, ER, P15, CD10, c-ABL, p16, and p73

overrepresentation of Wnt-related genes

Evidence for prenatal origin of childhood cancer

Cohort Profile: The International Childhood Cancer Cohort Consortium (I4C)

Rebecca C Brown,¹* Terence Dwyer,² Carol Kasten,³ Danuta Krotoski,⁴ Zhu Li,⁵ Martha S Linet,³ Jørn Olsen,⁶ Peter Scheidt⁴ and Deborah M Winn³ for the International Childhood Cancer Cohort Consortium (I4C)

International Journal of Epidemiology 2007;36:724–730

- National Children Study (NCS), USA
- Tasmanian
 Infant Health
 Study (TIHS),
 Aurstalia
- Norwegian
 Mother &
 Child Cohort
 Study
 (MoBa),
 Norway

AIMS

Most biospecimens from I4C are in the form of blood spots ⇒ Need to optimize DNA extraction from blood spots, which have limited amounts of DNA.

- Optimize **bisulfite conversion** and, if needed, **whole bisulfitome amplification**, of DNA obtained from blood spots.
- Use Illumina 450K to perform methylome-wide analyses of blood taken at birth from children who developed childhood cancer vs reference children.
 - 450K: ~½ million CpG methylation sites covering all promoter regions, all CpG islands, and many nonisland CpGs (shores and shelves) + sensitive, quantitative and cost

Frederick National Leffective NCI, USA

- Develop and apply **bioinformatics** software pipelines to analyze methylomes
- Decipher the mechanistic link between *in utero* exposure, methylome and childhood cancer

Unmethylated Methylated

Amplifying DNA using Whole Bisulfitome Amplification (WBA) creates methylome bias

We used DNA from reference DNA from a cell line (enough DNA quantities)

Two batches of the same cell line:

Batch 1 vs Batch 2

High correlation overall (r = 0.985)

Amplified vs non-amplified batches of the same cell line:

Batch 1 **before vs after** WBA

Higher correlation in strongly hypomethylated and strongly hypermethylated regions than in between

International Agency for Research on Cancer

World Health Organization Acquired by Genome Studio

Blood Spots - 450K Methylome Analysis: Quality Controls

Blood Spots - Quality Control of Methylation Probes

		Probe		Beta-value		
•	Samples	Detected CpGs (p<0.01)	CpG Percentage (p<0.01)	Average	Minimum	Maximum
Neonatal Blood	NB 1672	485405	99.96	0.4886	0.0012	0.9929
	NB 1597	485392	99.96	0.4729	0.0006	0.9947
	NB 1842	485358	99.95	0.4911	0.0009	0.9940
	NB 1645	485119	99.91	0.4704	0.0011	0.9914
Blood Spots	NCS 37a	484990	99.88	0.4712	0.0038	0.9953
	NCS 37b	484946	99.87	0.4719	0.0045	0.9916
	NCS 38a	483897	99.65	0.4226	0.0005	0.9942
	NCS 38b	482519	99.37	0.4240	0.0001	0.9935
Cell Line	Cell Line 1	485124	99.91	0.4748	0.0022	0.9926
	Cell Line 2	485175	99.92	0.4813	0.0032	0.9920
	Cell Line 3	485342	99.95	0.4738	0.0006	0.9926
	Cell Line 4	485272	99.94	0.4743	0.0021	0.9934

Blood Spots: Differential Methylation by Pyrosequencing

Cord Blood DNA (prospective): Differential Methylation by 450K

Summary and future perspectives

Conclusions

- DNA Amplification using Whole Bisulfitome Amplification (WBA) introduces methylome bias.
- Up to 2500 ng of DNA with good quality can be extracted from a 9 mm blood spot, sufficient for methylome-wide and region-specific methylation studies.
- Whether provided as DNA freshly extracted from cord blood (freeze-stored) or given as dried blood spots (stored at room temperature), DNA from either of these 2 sources can be analyzed for methylome-wide and region-specific methylation using our platforms and tailored bioinformatic pipelines, while passing all 450K quality controls.
- The methylation signatures are reproducible among duplicates and consistent using several techniques of methylation analysis.
- In utero factors can cause changes in the methylome since birth.